Refine your search:     
Report No.
 - 
Search Results: Records 1-19 displayed on this page of 19
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

JAEA-JRC collaborative development of delayed gamma-ray spectroscopy for nuclear safeguards nuclear material accountancy

Rodriguez, D.; Abbas, K.*; Bertolotti, D.*; Bonaldi, C.*; Fontana, C.*; Fujimoto, Masami*; Geerts, W.*; Koizumi, Mitsuo; Macias, M.*; Nonneman, S.*; et al.

Proceedings of INMM & ESARDA Joint Annual Meeting 2023 (Internet), 8 Pages, 2023/05

Journal Articles

Evaluation of high-energy delayed gamma-ray spectra dependence on interrogation timing patterns

Rodriguez, D.; Bogucarska, T.*; Koizumi, Mitsuo; Lee, H.-J.; Pedersen, B.*; Rossi, F.; Takahashi, Tone; Varasano, G.*

Nuclear Instruments and Methods in Physics Research A, 997, p.165146_1 - 165146_13, 2021/05

 Times Cited Count:2 Percentile:18.91(Instruments & Instrumentation)

Journal Articles

Model design of a compact delayed gamma-ray moderator system using $$^{252}$$Cf for safeguards verification measurements

Rodriguez, D.; Rossi, F.; Takahashi, Tone; Seya, Michio; Koizumi, Mitsuo

Applied Radiation and Isotopes, 148, p.114 - 125, 2019/06

 Times Cited Count:5 Percentile:48.99(Chemistry, Inorganic & Nuclear)

Journal Articles

Development of delayed gamma-ray spectroscopy for nuclear material analysis

Rodriguez, D.; Rossi, F.; Takahashi, Tone; Seya, Michio; Koizumi, Mitsuo; Crochemore, J. M.*; Varasano, G.*; Bogucarska, T.*; Abbas, K.*; Pedersen, B.*

Proceedings of INMM 59th Annual Meeting (Internet), 7 Pages, 2018/07

Journal Articles

Neutron resonance analysis for nuclear safeguards and security applications

Paradela, C.*; Heyse, J.*; Kopecky, S.*; Schillebeeckx, P.*; Harada, Hideo; Kitatani, Fumito; Koizumi, Mitsuo; Tsuchiya, Harufumi

EPJ Web of Conferences, 146, p.09002_1 - 09002_4, 2017/09

 Times Cited Count:9 Percentile:97.81(Nuclear Science & Technology)

JAEA Reports

Application of probability generating function to the essentials of nondestructive nuclear materials assay system using neutron correlation

Hosoma, Takashi

JAEA-Research 2016-019, 53 Pages, 2017/01

JAEA-Research-2016-019.pdf:5.71MB

Application of probability generating function for nondestructive nuclear materials assay system was studied. First, high-order neutron correlations were derived algebraically up to septuplet and basic characteristics of the correlations were investigated. It was found that higher-order correlation increases rapidly in response to the increase of leakage multiplication, crosses and leaves lower-order correlations behind, when leakage multiplication is $$>$$ 1.3 that depends on detector efficiency and counter setting. Next, fission rates and doubles count rates by fast neutron and by thermal neutron in their coexisting system were derived algebraically. It was found that the number of induced fissions per unit time by fast neutron and by thermal neutron, the number of induced fissions ($$<$$ 1) by one source neutron, and individual doubles count rates were possible to be estimated from Rossi-alpha combined distribution and measured ratio of each area obtained by differential die-away self-interrogation and conventional assay data.

Journal Articles

JAEA's contribution for R&D and human resource development on implementing IAEA safeguards

Naoi, Yosuke; Oda, Tetsuzo; Tomikawa, Hirofumi

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 58(9), p.536 - 541, 2016/09

Japan has been promoting nuclear energy research and development, and the use of nuclear energy for only peaceful purposes in accordance with Atomic Energy Basic Acts enacted in 1955. In order to ensure limited to their peaceful utilization, it has been performing a nuclear material accountancy and reporting it based on bilateral nuclear agreement (Japan and the United States, Japan and France, Japan and Canada and so on) before concluding the comprehensive safeguards agreement with the IAEA. After the conclusion of that in 1977, the Japanese national law had been revised. The nuclear material accountancy and its reports to the IAEA have been implemented based on the revised law. In 1999, Japan ratified the additional protocol. Then it has been responding a new obligation in the additional protocol. The correctness and completeness of the declaration of nuclear activities in Japan have been verified by the IAEA, and then the "broader conclusion" was given to Japan in 2004. There indicates no diversion or undeclared nuclear activities in Japan. Since then Japan has been obtaining the "broader conclusion" every year. In this report we will report the JAEA's contribution to the IAEA safeguards on technical research and development and human resource development.

Journal Articles

Uranium particle identification with SEM-EDX for isotopic analysis by secondary ion mass spectrometry

Esaka, Fumitaka; Magara, Masaaki

Mass Spectrometry Letters, 7(2), p.41 - 44, 2016/06

Secondary ion mass spectrometry (SIMS) is a promising tool to measure isotope ratios of individual uranium particles in environmental samples for nuclear safeguards. However, the analysis requires prior identification of a small number of uranium particles that coexist with a large number of other particles without uranium. In the present study, this identification was performed by scanning electron microscopy -energy dispersive X-ray analysis with automated particle search mode. The analytical results for an environmental sample taken at a nuclear facility indicated that the observation of backscattered electron images with $$times$$ 1000 magnification was appropriate to efficiently identify uranium particles. Lower magnification (less than $$times$$ 500) made it difficult to detect smaller particles of approximately 1 $$mu$$m diameter.

Journal Articles

Application of automated particle screening for effective analysis of individual uranium particles by thermal ionization mass spectrometry

Esaka, Fumitaka; Suzuki, Daisuke; Yomogida, Takumi; Magara, Masaaki

Analytical Methods, 8(7), p.1543 - 1548, 2016/02

AA2015-0572.pdf:0.66MB

 Times Cited Count:8 Percentile:50.61(Chemistry, Analytical)

The isotope ratio analysis of individual uranium particles in environmental samples taken at nuclear facilities is important to clarify their origins for nuclear safeguards. In the present study, automated particle screening was used to select uranium particles prior to precise isotope ratio analysis by thermal ionization mass spectrometry (TIMS). As a result, molecular ion interferences on the uranium mass region were able to be almost completely avoided in the analysis of real inspection samples using APM-TIMS. Therefore, the performance of APM-TIMS was sufficient for obtaining isotope ratio data of individual particles without molecular ion interferences.

Journal Articles

Current activities and future challenges of FNCA's nuclear security and safeguards project

Senzaki, Masao

Proceedings of INMM 56th Annual Meeting (Internet), 10 Pages, 2015/07

The presentation outlines the role and objectives of Nuclear Security and Safeguards Project (NSSP) as well as FNCA framework and provides activity examples of how NSSP member countries work together to strengthen nuclear security and enhance safeguards effectiveness and raise awareness.

Journal Articles

Challenge to ultra-trace analytical techniques of nuclear materials in environmental samples for safeguards at JAERI; Methodologies for physical and chemical form estimation

Usuda, Shigekazu; Yasuda, Kenichiro; Kokubu, Yoko; Esaka, Fumitaka; Lee, C. G.; Magara, Masaaki; Sakurai, Satoshi; Watanabe, Kazuo; Hirayama, Fumio; Fukuyama, Hiroyasu; et al.

International Journal of Environmental Analytical Chemistry, 86(9), p.663 - 675, 2006/08

 Times Cited Count:14 Percentile:40.18(Chemistry, Analytical)

The IAEA introduced the environmental sample analysis method, as a powerful tool to detect undeclared nuclear activities, into strengthened safeguards system. The principle of the method is that nuclear signatures can be evidenced if trace amount of nuclear materials in environmental samples taken from inside and outside of nuclear facilities are accurately analyzed. Currently, isotope ratios of uranium and plutonium in "swipe" samples are measured, which are collected in nuclear facilities. In future, the subject of environmental sample analysis will expand to soil, sediment, vegetation, water and airborne dust taken from outside of the nuclear facilities. If physical and chemical form of the nuclear materials is identified, we may estimate their origin, treatment process and migration behavior. This paper deals with the developed analytical techniques for the safeguards environmental samples, the current R&D on techniques related to estimation of the physical and chemical form, and possible analytical methodologies applicable to ultra-trace amounts of nuclear materials.

JAEA Reports

Establishment of a clean chemistry laboratory at JAERI; Clean Laboratory for Environmental Analysis and Research (CLEAR)

Hanzawa, Yukiko; Magara, Masaaki; Watanabe, Kazuo; Esaka, Fumitaka; Miyamoto, Yutaka; Yasuda, Kenichiro; Gunji, Katsubumi*; Yamamoto, Yoichi; Takahashi, Tsukasa; Sakurai, Satoshi; et al.

JAERI-Tech 2002-103, 141 Pages, 2003/02

JAERI-Tech-2002-103.pdf:10.38MB

The JAERI has established a facility with a cleanroom: the Clean Laboratory for Environmental Analysis and Research (CLEAR). This report is an overview of the design, construction and performance evaluation of the CLEAR in the initial stage of the laboratory operation in June 2001. The CLEAR is a facility to be used for ultra trace analyses of nuclear materials in environmental samples for the safeguards, for the CTBT verification and for researches on environmental sciences. The CLEAR meets double requirements of a cleanroom and for handling of nuclear materials. Much attention was paid to the construction materials of the cleanroom for trace analysis of metal elements using corrosive acids. The air conditioning and purification system, experimental equipment, utilities and safety systems are also demonstrated. The potential contamination from the completed cleanroom atmosphere during the analytical procedure was evaluated. It can be concluded that the CLEAR has provided a suitable condition for reliable analysis of ultra trace amounts of nuclear materials in environmental samples.

Journal Articles

Presentations at international safeguards sessions in the 21st annual meeting; symposium on safeguards and nuclear material management

Nishimura, Hideo

Kaku Busshitsu Kanri Senta Nyusu, 28(8), p.5 - 7, 1999/08

no abstracts in English

Journal Articles

Destruction of weapons-grade plutonium with pebble bed type HTGRs using burner balls and breeder balls

Yamashita, Kiyonobu; *; Shindo, Ryuichi; Murata, Isao; Saikusa, Akio

Nihon Genshiryoku Gakkai-Shi, 36(9), p.865 - 868, 1994/00

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

no abstracts in English

Journal Articles

Development of FCA portal monitor

Kaku Busshitsu Kanri Senta Nyusu, 16(2), p.6 - 8, 1987/02

no abstracts in English

JAEA Reports

Japanese List of Requests for Nuclear Data

*

JAERI-M 8062, 38 Pages, 1979/01

JAERI-M-8062.pdf:0.93MB

no abstracts in English

JAEA Reports

Glossary for Nuclear Materials Management and Safeguards,Supplement

; Ishihara, Takehiko

JAERI-M 4751, 82 Pages, 1972/03

JAERI-M-4751.pdf:2.22MB

no abstracts in English

JAEA Reports

Glossary for Nuclear Material Management and Safeguards

; Ishihara, Takehiko

JAERI-M 4497, 38 Pages, 1971/07

JAERI-M-4497.pdf:1.0MB

no abstracts in English

Oral presentation

Anticipations of NRF-based NDA of nuclear material using monochromatic $$gamma$$-ray beams

Seya, Michio; Hajima, Ryoichi*; Hayakawa, Takehito*; Koizumi, Mitsuo

no journal, , 

The NRF-base NDA using monochromatic $$gamma$$-rays would be used in nuclear security for secure detection of NM in thick shield and also for precise checking of interior structures of detected / suspicious objects. This NDA also would be used in nuclear safeguards for precise quantification of U/Pu isotopes in high radiation background, such as spent fuel assemblies / melted fuel debris in a canister. It is also useful for precise measurement of quantities of minor actinide isotopes in ADS (Accelerator Driven Sub-critical System; for transmutation of long-half-life minor actinides (MA)) fuels before and after irradiation in the ADS reactor core. In this presentation, we show actual NRF-NDA methods for these objects.

19 (Records 1-19 displayed on this page)
  • 1